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INTRODUCTION

TFIE problem studied here is essentially one of determining the influence
of the unsteadiness on the transonic flow of a uniform and subsonic

stream past an obstacle which at a given instant starts moving with a uni-

formly accelerated translatory motion relative to the undisturbed flow.
We assume  K 0 (5213); 1-11,2 -:- 0(62'3) K  being the parameter of

(
A

unsteadiness  K — 	 21 )1-2; A  is the acceleration of the body; / a charac-
, (/,3

teristic length;  q,„  the velocity of the flow at infinity; 6 maximum thickness
of the body, or another equivalent parameter.

We first examine the flow around a simple wedge profile for which
a sufficiently approximate solution may be obtained.

Considering then any profile whatever and assuming that in the initial
configuration of the flow there are shock waves starting from the contour

of said profile, we seek the influence of  K  on the shape of these waves
and their propagation velocity. To answer the first of these two questions,

we try to construct local solutions of the equation of motion around the

point  A  from which the wave is detached for cach of the two parts in
which the front of the latter divides the field, which join on the wave line.

In order to evaluate, at least qualitatively, the influence of  K  on the
propagation speed of the wave, we consider the limiting case when the

profile suddenly varies its velocity with respect to the fluid at the infi-
nite  (K —>x)).

The quantitative determination of the unsteady flow with shock waves

is a problem of extreme difficulty; these difficulties become attenuated
if the Mach number is close to one, since in these conditions the shock

waves are fixed to the trailing edge, and the variation of their shape with
the time hardly influences the configuration of the upstream field, and
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therefore the coefficients of pressure  Cp  on the contour, for whose cal-

culation it is possible to employ approximate methods; particularly
useful to this purpose, is the method of J. R. Spreiter and A. Y. Alsknew,

and here we will indicate how this method can be extended to the study
of the non-stationary transonic motions around wing profiles and revolu-

tion body.

I. LIST OF SYMBOLS

a =  sound velocity;  a* =  critical velocity;  a,.  critical velocity

of the relative stream

A =  acceleration of the translatory motion of the profile

P 11,,DC =  pressure coefficient =

Cr

„

= drag coefficient

( 2./3

D —
1— M,

f(x,y,T)=  reduced potential of the perturbed flow relative to the

velocity at the infinite — (7--1-1)1/3 (IM„) 213 0

f *(v, y,T) =  reduced potential of the perturbed flow relative to the
critical velocity

f** =  reduced potential of the perturbed flow in the coordinates

(X ,  Y, -r)

( AI  )

1 2

—.,- ;  IC*


/ = length of the chord

M =  Mach number (local);  M„, =  Mach number of the flow
at the infinite

p =  pressure  p,=  pressure of the flow at the infinite

=  velocity  q, =  velocity of the flow at the infinite

R, =  radius of curvature of the profile

/ = curvilinear abscissa measured along the shock wave

t*  = time;  t —  t*
1

u, r =  velocity components; they have different meanings depend-

2
ing on the sections;  u* —u; r0 — 1 	 (1 M„);

71-'71

-
2(1 -M,)
02/3 0/114," 1)213

Il—
2K
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x", yX = coordinates of the absolute reference system (convention-
ally) in the physical plane (x in the direction of the axis
of symmetry of the profile);

xl x
x — 	 • y =y •' Y /142/3 6' /3(1 ±y ) -i3y

X = abscissa with respect to a system of axes fixed to the pro-
file = x

Xa, Ya=  coordinates of the points of the profile from which the
shock wave starts

velocity of propagation of the shock wave with respect
to the profile

V,,a = velocity of propagation of the shock wave with respect
to the system (x, y)

2z -3-u*3/2  z  -*312

3 —  143  03

y =  specific heat ratio

6* =  maximum thickness of the profile;  6 = —6*

1
q„,38 =  excess of velocity relative to the critical velocity (in the

flow relative to the profile) in the point the shock wave
starts from

„t.t = axes with their origin in the point from which the shock
wave starts = tangent to the profile; du normal); =  i tu

lq„ock* =  potential of the flow (with respect to the x,y axes)

=  potential of the perturbed flow relative to the flow at the
infinite

lq„00* =  potential of the flow relative to the profile

=  perturbed potential of the relative stream with respect
to the critical velocity

(/) = potential as defined by (27)

The meaning of other symbols is indicated in the context.

2. FLOW AROUND THE WEDGE PROFILE. EQUATION OF MOTION.

BOUNDARY CONDITIONS

Let us relate the motion to a system of axes (x*, y*) which we consider
as fixed and relative to which the flow at the infinite has the velocity
directed along (x*) (Fig. 1), whereas the wedge moves with a uniformly
accelerated translatory motion with velocity, 41 = — At* f,  being the
potential of the perturbed flow as defined in section (1), and f,x,y,T the

34
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space and time coordinates expressed as a function of x*, y*, and z* by

the relations given in section (I ), we may write

K2 2K
(y 1)2/3 (52/3 f" + 1)213 62/3 fX

	

1 1 


(y l )2 /3 (52/3 1 mr]fxx fY Y m2/3= 0 (1)

22- A t  •2

B '
-0 -•
qi = - t•

qOE,

FIG. I.

wherein the meaning of the various symbols is given in section (1); (1) is

the equation of the "small perturbations" in the assumption that

	

(1 — M,) (273 );  K  0 (1  —M,) = O(52/3) (2)

and it differs from that given by C. C. Lin, E. Reissner and H. S. Tsien(2)

due to the presence of the term in K2, since it is not permissible to neglect

the term in the second derivative with respect to r of f even if K is small,

of the order given by (2), for values of zIK in the order of one, or for values

of x in the order of (1/K).

We assume now that
6 -23

f* f_ 1)1/3

	

mOE, (7,, ) X

1
f 	  2 31)2/3

( MJ
	 2 (1

(3)

62/3 = D(1— M,);   = K*

	

(y 1)213 D

Thus, (1) becomes

	

— =  0 (4)

The corresponding conditions at the contour are, x„ being the abscissa

of the wedge apex 0' for z = 0:
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- < x,— - f * =  0
2  Y

T2 T2
X - < X < 1 4- X0

2

for

iY= 0,
21 K

f  y*= 1 +  
1

(1 111,
)
+ Kr +  y+1  K* f

y+

(5)

T2
1 + A-0 x  f;,K =  8

for T 0, the potential must reduce itself to the Nrturbed potential
corresponding to the uniform steady flow;
for

x 2+ j,2

2
	 (= ft,)(6)7+1

f = 0

for whatever r.
The form of equation (4) induces us to assume, for  K*  cnough smal-

ler than one,

I* =f:+ K*Ii + K '2f  +... (7)

wherein the equations fulfilled by the f are obtained by substituting
(7) in (4) and equating to zero coefficients of the successive  K* .  Thus ,
we obtain

on the conditions

T2

f;;., =  0, for Y= 0; -

2 K
-L1(1 M

)J_ -
1

1 K
(8')

for Y=0;

	

1-2 T2

	

/40 2 " 1+ xo— 2-

f 0*, =  0 for Y = 0; 1 + T2

f f y =  for T = 0;

I 5 )-213 2
f,tx= -(7+lrk .m„. 7+1

MT,)=  u, ; 1 = 0

for A-2-1-y2 


(8")

(9)— f(T,Xf1',S.7 xx y y —  2 f 14)4, XI

34'
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on the conditions :

_ay-= ,

y k-t-,

y = °

CARLO FERRARI

for =;< x <

T-
for y = 	 u0

2

T2
for y = 0 ;1

2

r =y 0 , for T =

	

= J1'*.y = ° for

<

<

T2

2

C•0

2 (9')

(9- )

and so on for the other j„* (for n  2).

We shall limit ourselves here to determine the first two terms of the

development (6).

3. WEDGE PROFILE DETERMINATION OF THE FIELD CORRESPONDING


TO Jo*


This problem is substantially the problem of Cole", studied w ith

different approximations also by Trilling and Walker"), by Guderley

and Yoshihara" by Yoshihara alone"), by Mackie and Pack(7),by Aslanow (s),

and again by Mackie and Helliwell(9) and by Mackie alone(") : what is


important now to observe is that from these researches there appears


a most noticeable insensibility of the pressure distribution on the Nk edge


to the form of the sonic line, and to anything that may happen down-




stream thereof. Thus, for instance, while the original research by Cole


admits that the sonic line is a straight line perpendicular to through


the shoulder  B'  of the wedge, that of Trilling and Walker determines the


said line by fulfilling the conditions at the contour in the corresponding


problem of Tricomi ; and the results thus obtained are not correct only


in that the shock wave is not determined, which however starts from  B',


and for Moo< L  influences also the subsonic portion of the field; now,


the values of the drag coefficients obtained in both researches are very

i
(y+ 1)1/3

slightly different to one another : in fact, it s  cr 0.3 (Cole);00/3 


1—Al 2
0.275 (Tr. and W.) for 	 = OE825. Further : for M, = 1 Cole

1)113
obtains   c  hereas Gaderley and Yoshihara Qive the

exact value (in the approximations of Tricomi), (y H1)106  513Cr = 1.75

and Mackie and Pack evaluate the correct value (by assuming the equa-
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tion of Chaplygin as the equation of motion) (y+l)l/36-5'3c,. = 1.55.
Still more significant is the comparison between the results of Cole and

those of Mackie and Imaim) for the problem of Helmholtz-Kirchoff
relating to the same wedge, for which the sonic line is also the stream

line to which the contour of the latter belongs, and which eets detached

from the shoulder /-3': in fact, for M, = 1, and aeainst the value of c„
according to Cole, already indicated above, we have l)"36-512 cr=  1.89
according to Mackie, or 1.84 according to Imai. Finally, the values of

the pressure coefficients on the wedge, for M,  = 1, obtained by Cole
are in agreement, within 1 or 2 per cent, with those of the more exact

research by Guderley and Yoshihara.
This insensibility of the pressure distribution to the shape of the sonic

line and the confieuration of the field downstream thereof, which ap-

pears most clearly from the set of results indicated above for the case

of stationary motion, authorizes us to think that also for the instant re-

search relating to unsteady motion any permissible assumption on said

line will not have any material effect on the consequences deriving there-

from, as well as it appears permissible to assume that the form of the

field adjacent to the obstacle can be determined independent of the shock

wave and on anything which may happen in the supersonic portion.

For this reason we will assume, for the determination of f,* , the same
assumption of Cole, whereas for .fi* (and possibly for the other f;) no

particular condition will be imposed on the sonic line. Let us accordingly

( af,,*
assume, as the independent variables, u* — — Y: and r = — -- instead

dx ay
of x and y, and as the dependent variables the sante X and y instead of

f,*; Eq. (8) is thus transformed in the following:

d2Y v ''Y -
ôvi




au*2

Whilst it is
ùx ()y

au*

Due to the conditions (8'), to the points c_,, c+, there corresponds
in the hodographic plane (u*,  r), the point c, of abscissa 4; in corre-
spondence with 0' the relative velocity is null, and therefore it will be

— Afo.)±k-i- 1dx

whence, by virtue of assumption (7)

( V 2/3

= (u*)., = (;.+1)113 	ox 0. )

(10)

(10')
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which is close, with the usual condition in the theory of "small pertur-
T 2

bations", to  u* - * oo in the top 0'( y = 0 ; x — xo— , •

Correspondingly, the second of the conditions (8') must be replaced by

2 T2

f0*, Y =
y +1

(1 Mco) = v0, for y = 0 ; xo = —2 x < xo — 2-
 

so that while to the line in the physical plane there corresponds the

line cœ O of axis u* in the hodographic plane, the segment O'B' of the
first-mentioned plane is homologous to the line 0,x,'b' of equation

2
v = 1+

-F 1
(1  —M,3)  = vo in the second plane, the point b' of the sonic

Y
line (u* = 0) corresponding to the shoulder of the wedge. According

T 2
to the assumption of Cole, the u* = 0 is the straight line x = x0+1 2

and therefore it appears that to the domain of the physical plane upstream

b

2
v vo = + — (1 Na,)

y + 1 Oco

2 	
+ 1)% (00%

00'a

0 . *

FIG. 2.

of the sonic line—wherein the fo* must be determined—there corresponds,
in the hodographie plane, the indefinite half-strip indicated in Fig. 2.
The y, which in this half-strip is defined by (10), fulfils—as indicated
above—the equations:

Y = 0

Y0

= 0

for

for

for

0 < u* <
0 < u* <
u* = 0

;

;

v = 0

v = v, 


whilst in correspondence with L. it exhibits a singularity of the "doublet"
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type. The solution of (10), which fulfils all the conditions just mentioned,

has been determined by Cole"); we have (Brysono2)):

3 (1.77.n.7rsin mz ) I , (mr  2  ) K _
vo - V VO-1 O

— > 0

) 2, )
3  (117

VO ro

z >.-_-, >0

T2

2
1 2 (

1'0

)1 /3  f  \ 2/3

/1:7 cos (mr ) (tut
VO VO VO Vo

u 1




1 /3

2(2




3 v„ v,




/4

122 ,)




2 2 31/

\ 3 v„ 






u

•
n:-.T nyt

1

CV

X
)1/3 ( z )2/3

V
n:-r cos (rur -) K2 / 3(inr ) _ nTI

Voro1'01'0ro u=1

- 0

(13)

4. WEDGE PROFILE DETERMINATION OF  J.,*

Also for this determination we assume as the independent variables

the same u* and v defined in the preceding section, which are in biunivocal

correspondence with x and y by virtue of (13). We obtain

Lu-,*(u,v)1— /32, 2.fl!vy+13
wherein

(aau ( )au  2) 


du av au av

	

/5'1,2  u = 0
dx ax ay ay

du )2 (

	

132, 2 ( ay ay =

a Iau) au) a (au)  0
uOX u‘ax \dx dy dy

a (av au av a ay\  0
u ax ax

+
Ox ax dy ‘dy

u
x

fil=

=
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On the other hand, it is

()11
—

ax ôy

at av

ay
being, on account of (13) a = o, while we have indicated with

z

a(x ,T =
a(u

the Jacobian determinant of the transformation.

We obtain, therefore, from (9)

f uu± 1*.t rv'*T
av

(14)

Concerning the conditions which f,* must fulfil on the frontier of the

domain (u* , y) wherein it is defined, we observe that it can be deduced

v av
that for v vo it must be KT • L*,„(

,
because — 0 on v — v„ ;

01' v=„0 x

we thus deduce :

— KTX.Y0v=v0 — Krg(u*), for v = vo (15)

wherein g(u*) 	 can be calculated easily by means of the first

of Eqs. (13). Similarly, we obtain :

= 0, for v = 0 (15')

whilst no singularity exhibits the f,* for v = 0 ;  u* = u. A particular
integral of the non-homogeneous equation is

trt= T COS (
V 
V 	 F„(u*) = .1-zp(l)(u* , y)

vo
.= 1

wherein F(u*) is given by

3 -1/3 (

—
)1/3

F(u*) = zvo_4/3 ( 2 r, )1/3L 113(n Tr -1-.1 )(n.7)2 (-2)  X
3 vo vo vo

x [— K 113(nir —) j j,"213 1_,13(n -- ,-)K_113(iv't
vo)  ,c1+vo vo

+ I-1 13 (Mt 	 5-2/3

.VOA_113
(Mr r',-213K2 (mT

vo
-113 v ,

(16)
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for .7 > :1'„; or

F
)1/3

„ (U* )  = " L K11:' (mT ) ). 3 vo

X11.— K,13(n
vo

‘,.''13 Pil,(n

_
7 Z__) j ... .77

,.

:.-

,--1 K,( — )1 i
v 0

f 1 1177

z , 1.4)

(117r

/3 ( )1/3

-- X

1 :2/3 K21/3 1111

vo, f )1
L,,(un  Lii3(un

v 0) z— 1111)l'o1
K —1/3

Vo

(17')

for =<

The series which expresses (16) will absolutely converge both for
u* < u co*  and for u* > u, and the series corresponding to the first
interval is the analytic extension of that corresponding to the second
interval. On the other hand, ,f,*(t,') fulfils (15'), whereas for v = v„ it is

= O. It is therefore necessary to add to (16) a solution of the homo-
geneous equation

0

which fulfils (15) and for which it is also (g„),=, = O.

To this end we assume

cosh du
f,*(2) — y(2) (u* , = Kr ) G(À)

sm
.

h dv,
S(u* , 2.)d (18)

with

	

S(o , )1) = 0 ; (:));i5,).•=0 1 (18')

and G(il) an arbitrary function, momentarily subject to the sole condi-
tion that G(o) = 0 (see for instance Mackie"). The S fulfils

(FS

	

S = 0 (18")

	

du*2 u

and therefore, due to the conditions (18'), it will be

S(u*, = z2/3/0 2) 21;. '103'2Y/30-2-2 *312
3 , 3 3

13
3

(19)
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From (18) it appears that AT = 0, for v = 0: by imposing that
for v = vo the condition (15) must be fulfilled, we obtain

CO

AG(A) S(u* , A)dA = g (u*)  (20)

The above (20) is an integral equation for  G(A) ,  which for S(u*,
as defined by (18") and (18'), has been solved by Germain("), and in
particular we have

-2

G(A)= z (1)513 [r( ;.213 g(u*) S (u* , A) du*
3 3

(21)

0

For the expression of  g(u*),  as it can be deduced from (13), the integral
in the R.H. member of (21) will converge, and it appears further that
it is  G(o) =  0, as required. If therefore we assume

.1fi*=1*(l)-HfP(')
fi*  will fulfil all the conditions imposed therefore.

5. WEDGE PROFILE. PRESSURE COEFFICIENTS ON THE PROFILE.

COMPARISON WITH THE RESULTS OF THE LINEAR THEORY

In the approximation corresponding to (1), the pressure coefficient
in a generical point of the profile is given by

Cp = —z(7-1-1) 1/332/3f, (22)

and therefore, on account of (7),

2
c„ = z (y 1)-413 2/3,f0*, x [ 1 +  K  *T tl:T) (u , v()+ Kr» (u ,  v0)] ,),±1 (1 Mt)

(22')

If now we calculate the values of cp for the instant in correspondence
of which the velocity relative to the profile is equal to the critical velocity
a*,  corresponding to the stream at the infinite, we obtain for this instant

Kr, =
2 1

(1 M
H 


and therefore

K* To —
( )+1)513  D

which is independent of the parameter of unsteadiness, and it will be,
for T =

2 	 1  (Cp)Wu.) 04*, v0)-1-
, T. = —2(1 + 1)-h"(52/ Y[o*, x l

(2 + 1)5/3 D u
2 1  + (y+ l),,, D KT:4i  (u 2

, vo)] y + 1(1 M!,) (23)

2 1
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which appears to cause the pressure coefficient—for an asymptotic relative

velocity equal to the critical velocity—to depend linearly on the parameter  K.

It is interesting to compare the result obtained with that given by the
linear theory: now, from the research of Gardner and Ludloff" (sec also
Ch. Roumien"5)) we have

Cp = (5K-112H„(x)[1 ! K111(x) ]  (23')

what, unlike (23), for  k  0 gives cr cx in the whole profile. If however,
in accordance with (2), we assume (24)  K = D1S=13, it will be  (SK -1'2 6213
and (23') becomes (23")

Co = const. 6213 1-4(x)[l+ 111(x)K+—]  (23")

which is formally analogous to (23); the analogy of behaviour of (23")
to (23) also exists, at least qualitatively , as far as the dependence of  Cp
on x is concerned, since in both cases it is  Cp  c‹3 as the point on the
profile tends to the apex 0' of the latter. The difference, from the quan-
titative point of view, in this connection consists in that in (23"), (25)
110(x) x--1/4 whereas fo*x, indicating for an instant again with x the
distance of the point on the wedge from 0', also tending to infinite when
x tends to zero, however less rapidly than expressed by (25) ; we may
say, fo*, .Y.--11" with  n >  4.

The research of Gardner and Ludloff is carried out for the case of
a profile decelerating until the sonic velocity is reached, starting from
supersonic initial conditions: b—ut Biot116), who has considered the case
of a profile which accelerates from zero up to the velocity of sound, ob-
tained—as far as the dependence of the pressure coefficient on  K  and x is
concerned—results indentical to those indicated abov e.

We may still observe that the passage from (23') to (23") by virtue of
(24), is w holly analogous to that w hich, by utilizing the parameter of
transonic similitude, permits the passage from the the expression which
gives in the stationary motion, according to the rule of Prandtl-Glauert,
to that which gives the same according the similitude rule of N. on Kármán.

The parameter  D, =  K , or, what is the same. D*
1—

m —D,D;6213 


it appears therefore to have the meaning of a non-stationary parameter
of transonic similitude.

6. INFLUENCE OF UNSTEADINESS ON THE SHAPE AND FORMATION OF

THE SHOCK WAVE (FOR THE TRANSLATORY MOTION OF THE PROFILE).

In the preceding example the shock wave is always anchored to the
shoulder of the wedge and exerts a very slight influnce on the pressure
distribution on the contour thereof, upstream of  13' :  just this property
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has permitted the obtain of a solution, although approximate, of the problem.
However, in more general cases of motion, the shock wave or waves a most
considerable importance for the determination of the aerodynamic charac-
teristics of the profile, and it is therefore essential to determine how
they are influenced by the non-stationarity. In the case of the latter it is
due to rotational oscillations about a center lying on the straight line
to which the chord of the profile belongs, the problem has been studied in
two most interesting works written by Messrs. Coupry and Piazzoli"
and Eckhauss08>: unfortunately, this study exhibits much higher diffi-
culties in the case here considered, wherein the stationarity is due to the
accelerated translatory motion of the obstacle in the direction of -4,
and therefore we are constrained to consider only some particular aspects
of the problem.

One of these aspects relates to the shape of the shock wave and the
formation thereof in accelerated motion, and in order to deduce some
property of the flow we shall try to determine local solutions of the equa-
tion of motion which are valid directly upstream and directly downstream
of the shock wave.

I
I •

Vo

-

FIG. 3.

If  H  is the point of the profile from which, in a generical instant, the
shock wave starts (Fig. 3), and (x„, y„) are its coordinates, we consider
a system of axes  ($01)  having its origin, in any instant, coincident with
H (e  tangent to the profile in  H,  whilst  q  is normal to ); thus, we have

=  x„ ( r)  ; y = Yh( r)--$ 0h+, 1 (26)

Oh  being the slope of the tangent in  H  on the x axis. Let us now as-
sume:

(A- , y , = (/)[.v„(-1-)+ E, yh( r)--$„0-H1 = 4)G- , i , r) (27)



On the Transonic Flow around Wing Profiles 541

We deduce

—2-= 454; = = dr '

or,x =

being vo the velocity of displacement of  H,  namely of the wave front on
the profile. The equation to which 4) fulfils is

2K0,4+[(y+1)04  2v° 1044-0,i7 = 0
qcv

Let

= ,;(s, r) ; )) = Yi(S, 2)

be the parametric equations of the line  S  which is the wave front,  s  being
the length of the arc measured  S  starting from  H ;  if we now indicate with
u  and v the velocity components of the motion relative to the profile along
the axes 7)), and characterized with the indexes 1 and 2 the values
of the magnitudes directly before and after the shock, we obtain, after
not difficult but rather toilsome calculations:

( U4 \  
4)n±

[ (d=ii) A

ur2 (by\




ds" H

wherein  A  is given by

I 	
A =  2

Ui

being

11,H_2

	

, -2vo)1

	

1 -(1 —11/1 2v° )a ,*: 

9,4 u2

1— M2 ! 121'0
2 . 0 ,,,

(31)

1 Ng (yi 1)(1 ur
a* 2vo

t q (31')

Eq. (30) is quite similar to that obtained for the corresponding stationary
problem, and actually it can be reduced to the latter by assuming vo = 0.
The consequences deriving from this assumption are therefore also iden-
tical to those already known from the permanent motion; when  H  is ap-
proached on the profile, it is certainly

[ a I _u., 12vo 1
,! a,.* Rt. ui a

1
'' 	

/ (SD ) RC1\a 	/1
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(Rc)„ being the curvature radius of the profile in H (divided by t);
likewise, it is

and accordingly (30) becomes

[2  _

al'(1+ vo )  n1  ] _ Ai dar)
Ili q„, A, H \ CIO H

(30')


Now, if the profile has its concavity towards the stream, it is (1 )11 > 0,

and being A< 0 always for --- - > 1 for  s = 0 it will be
a*

(dari 

ds2) „ -

--:' 0 ' as

it must actually be, whereby the shock line in II can be effectively deter-
mined so that the condition (30') will be fulfilled. If instead the profile

is convex, and therefore (k.)„ < 0,
(d2ii

by virtue of (30') should be
ds2)H

positive, and because
( (1))

— 1 whereas it must be everywhere
ds
dly

it appears that there is no normal shock wave, in contact with the profile,
comparible with the condition (30'). Since it is certainly true that

r d ( zr, ) (Ili 1 )I0ii ar* H

it results that the value of I
o

 lit *kdi) a ),. „
when II is approached on  S,  is given,

on account of (30), by

[  u,ar'' I

4)1„ ii R JH (ds2 )0

whereas, if H is approached on the profile, it will be

[ ur a* 1
(t: u,

and therefore
0 (

r should have in II a point of indetermination tending
d 1 4

in H to different limits, depending on the line on which H is approached.
Now, it is possible to obtain a local solution which will fulfil the con-
dition just indicated, and it is also likely that, exactly because only one
local solution is considered, there can exist more than one form of solution
having the properties required; on the other hand, we think that also
in the case when (30') can be fulfilled, due to the singularities that the
functions urand vr would have in H, the shock line  S  must be determined

[ d u, )]  (u,) (1

)an a,* , ar*11 Rc If




a;.`Rc

(32)

(32')
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not on account of (30') but by seeking solutions in the two fields separated
by S which would join—together with their normal derivatives—on the
same, the shock equation being further verified on the latter. The local
solutions, on both sides of the wave, which we propose here, are similar
to those already indicated by us for the case of the stationary flow, and
therefore we shall only give a brief hint.

Upstream of S, 4) is regular and may be expressed by

= +E. !bi,ie2+bi,292+!1).2,2n2+ • • •
(33)

being

(11,-4
E

if  q, = (1—e ) .

Downstream of S

wherein

/30 =  21<-(46T)11

1
/32,2 =

(1-_,)

1)1,2

(c/oç,i)„

=
)11

= 1(1)-„)11=

de
= 2K dr

we write Eq. (28)

fit) 1j2, 2 (.1);.;

=  2K
dr(

21.
1)04

U[

1

Rc)

;-: (yDE

as follows:

(19tm  =

E )
qcv

= ()[
n

—

H

II

21,„,

(0 ) 11

b1,1

2y v„

Eq,




y-1-1

Upon assuming, in immediate proximity of H,

13
91) =

02 f2)±  (/)(E,
11) ;




1 e  113-2,2

Eq. (35) is transformed into

Now, we assume that

(/) = R, W(e-Fin) = R,14,7(
)

W(2) = 110,  lo+/X2(:2-FP ( ) I
(37)

wherein  P ( )  is a regular function for --= 0, namely in H, which fulfils

(dP) d213)
the conditions d , ; .0 -d„.5- ;_;=0= 0, and which does not require to
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be determined in order to obtain the local solution, to which we confine
ourselves here; 2, and 22 are two constants to be determined so as to ful-
fil the conditions imposed on the flow in H, namely to the (32) and (32'):
finally, it is

w,= e3/2I i32, 2 - I -I-
2v0)

	 (

By equalling the two expressions of 4)given, by (33) and (36); we obtain

the equation of S, while the junction of the normal derivatives on S is

ensured, in immediate proximity of H, by the condition imposed by (32).

The procedure is quite identical, as already stated above, to that in-
dicated in (19) for the stationary case, and we again obtain that the shock
line exhibits in H a logarithmic singularity, whilst the flow undergoes in H,

au,
immediately after the shock, a rapid expansion, since it is

()
:. (log 0

a$ II

in proximity of H. What is still of interest to note, as far as the influence

on nonstationarity is concerned, is that e, which is a measure of the excess

of velocity on the critical velocity immediately upstream of the shock,

V,
is now multiplied by the term 1

2y
whereas the difference of

7+1 ego° '

the velocities u1—u2 is given by u1—u,.,---_, a,.*2e( 1 V0 . It appears there-
ego,

fore that what characterized such influence is the parameter  V, , and
ea,

accordingly this influence is sensible if

0(e)
qc.)

Now, in nearly stationary conditions, it is

V, 1 dX: 2 dXa
	 K2

q,„ q,„ dt*  y ÷ 1 dM,


and since it is M
dX

oo   dm aœ 0(1), it will be

V,
0 (K2)

qco

and the condition indicated previously gives

K 0 (012)

Eq. (39) is obviously valid only for K so small that the flow may be con-




sidered as nearly stationary; let us now examine the reverse limit-case

of K —> co corresponding to a sudden variation of the velocity of the




(38')
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stream relative to the profile. Let us schematize it as a flat wall with an
angle of attack a (Fig. 4), and let Aq„ the velocity suddenly assumed
by this wall which has remained fixed up to the instant t* =  0. An abrupt
increment of the component of the relative velocity normal to the obstacle

Sd

Ago) r,,
(Vo.a )c1= ao, qao

o
fil

(V
0,a) f = —a00

S

FIG. 4.

ig„ = —aq,a is thus produced, to it there corresponds a sudden increment
of the density of distribution or the bound vorticity, which according
to the result obtained by Possio(2°) becomes

Aq,
t1/' — 2a,  a (40)

9,)

We have thus an increase of the velocity on the face __kJ - = —a,- ' a,

and an increase of velocity on the back A/Id aoatiq' a. If now on the

back, in correspondence with a point  H,  in the original flow a shock
wave is present, for  t= 0* the two velocities before and after the shock are
bound by 11,112 a*2, whereas for  t= 0*, and always with reference to the

(Aq,

	

same system of axes, we have u,-1V

	

-  oa,Al ' a ,.  u2d ao.
9. (I,

—  a*l,  yo,„ being the propagation velocity speed of the wave with respect to
, .°the fixed system of axes. We deduce (41) 1',,,a — a,

IT
	 a; consequently,
qD.0

the propagation velocity relative to the profile is: Vo  —  Aq(„ 11 ±1 ;
M,

if the wave starts from the front, it is instead

Vo,.  — q. (— - I—a) (41")
M,

This difference between the propagation velocities of the back and
front waves may indicate a beneficial effect of the acceleration of the

.4

CI03

35
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critical transonic condition, for the profile with incidence. Since it is

zlq, == q, lirn (KT) the (41) seem to indicate a dependence of V, on T,

and that V„,'q„ T 0(Kr) for values of K.

7. APPROXIMATE DETERMINATION OF NON-STATIONARY TRANSONIC

FLOWS

The extreme complication involved in the problem of the stationary
flows, for the values of  K  corresponding to (2) makes useful the research for

procedures and methods based on simplifications, which might appear as

rough approximation, but from which have been obtained very satisfactory

results for the corresponding stationary problem. To this purpose, partic-

ularly useful is the method of Spreiter and Alksnew, at least for values

of sufficiently close to one, provided that the shock waves are either

on the trailing edge or very close to this point. l
From (1), by omitting the term in K2 because for the procedure just

mentioned only the flow in close proximity of the profile is considered,

and if

we deduce

X = X —1.

2K r.

T2 ;f(X, y,

M ^s.,2

= f**(x.


f *

y, T)

f;* = 0




(y + I )2/362/3

Assuming  f! = 2; and, if the equation of the profile contour is

y = t)g(x),  so that for the tangency of the velocity relative to the profile

of said contour it must be  (f;")xs, = gx(l+KT)  for 0 < X < 1, (43')
let us now re-write Eq. (43) in the following form:

]

F (43-)

The simplification used by Spreiter and Alksne is, as it is well known,

to admit 2—in the equation corresponding to (43") for the stationary
flow—to be constant, i.e. independent of x and y; let us now extend this
simplification also with respect to r. Then, by applying the Laplace
transformation with respect to the variable T, we obtain

(y 1)2136213[Pfx**--(f.**)01-
F

being

2K 2K-r

(7  -1- 1)2:3à2/3gt

2K



f** Lr[f**], LT[F}, (fne = (fn,_e
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whilst from (43') we deduce

, K
.,gx•

P P-

From (43") we obtain, if

(j: * ) 2K

= — - _u  d ge de-1 ' 1

	

hp)(P P2  dx 6! 


wherein

a •

hp  ox aFd.;

"\D

h0

c).vI
6

a(f$*),,  d:f (47)

- (A i hp)hr
/ hp

e
ua(x—,)

After some calculation we have

1 K\  d i• gd , 21—Mt

(2  --hp) p21dx  (11 p(?1-1-(y021362  3

210. 1 h „

f,1)2136211p211),)



By anti-transforming (48) we obtain

x
4:u — —

1- Il =
Kr  — erfc (1 ' --)  —K i  erfcl ' -  dr1]  g.(1- - '

t Ali. li h 1 h  dx(; 1 _v_..:

+
1-- Mt —2  KT I — M ,2 -

Ar 1r Â r
2Kh

	

h i
(^/ *1)2'3 6213 (), _ _1)213 6213 e m 2(7 , Iy3 f),,,, ( I — e h ) -- e h (u)

 

Now, we may re-write Eq. (49) in the form

- 2Kr  , 1— Al 2 ( aU ): 2U—  — he (00e
_H 1 )2/3 62/3 _1_ 1)2/3-62/3
 Ox

1 [
1 KT  erfc (1 ,/ ;IT )

h
f  erfc(1, )

&I]  d g.
V h  jdv. /

2Kh(1—e  h
2112( y 1)2/362/3

H )2362/3




(49')

35.
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obtained from (49') by re-writing in place of 2, whereas in the terms
ax

which are small if  --h is sufficiently great, the symbol 2 has been maintained.

Note now that for x = 0 we have

[(00 1 —/l4!Q  0(00 1 	 d r	 g` cl.; (50)
(Y+I)-/M dx 6

whilst in nearly-stationary conditions (K < 1) it is

[11(s) 1— Aft —2hrii du(5)y2
— — 	 d- (51)— 
_T1)2;36213 ax dx I x—

Since the Mach number of the flow relative to the profile becomes
equal to one for (51) 2KT = 1—MI, it appears that for the values of

ET of the order of magnitude as indicated by (51),
(C)14(2))and td(111 have

	

dx k dx
values close enough to one another so that we may put in (48')

-r ;thr I " 1/2
e d g4d4--

k —(u)oy-1-1)2136213 e dx 0-c dx 61

ut"d
and in lieu of 2 the value 25 — 	 . Thus, we obtain

ax

[ 1—M2 —2/3
ei„ +1)2130213 f F2(x'

being. now

1
F(x , T)

I7'

;sr
[

)sr /

1 ; KT ±h erfc 1 /
h

Ass




K— AsT'f erfcl f_ _
2K2



6 V h dx vx_$ As/2 (y I )2/3 62/3




while X„ is the value of X, for which F(X0, T) =  0




Correspondingly, we obtain for the pressure coefficient




I21—A1--2Kr
" 62130-1/

1/3)




= 2(y 3FS(x1, T) dxhii 
1)2/362/3

(52)
;0
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Eq. (54) has been applied to calculate the pressure distribution on a profile


having the form of an arc of a circle, at the time r
=

, assuming

Moo  0.9; = 0.05;  g(x)=2x(1—x); K= 0.10-2;  8.10-2; j 2.10-1

and the results are given by the diagrams of Figs. 5 and 6.

9
04 06 08

cr» t..

K. 10' r

K=8 WI

K= • 10-z

FIG. 5.

Spreiter and Alksne's method, which was extended by the Authors to
the case of axial symmetric transonic flow in (21), can also be applied in
the same way to the previous one to determine the acceleration influence
on the pressure distribution on revolution bodies.

a

0,5


1,0


1,5
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The equation of the motion is now

2K Aft L 2Kr
-1-fx**Jf!"--  —1f:* --- 01y2/302:3 f::kr : (y _H 0 ( _, (y + 02136213 )4 y

(55)

wherein Y is now bounded to the distance r = of a general point from

the axis by the same formula binding to y in the two-dimensional flow,
the variable indicated with the same symbol.

0.1

K= 2 IC

K.8 10-2

Nis

o 0,5

9°

FIG. 6.

If r = OW is the equation of the meridian line of the body, the con-
dition to be satisfied is

lim  (yfy**)  —  S'm(1±Kr)  (55')
27c

binc
ds

S' '• S = r2 — area of the cross-section; m
d.v 


Applying to (55) the Laplace transformation we obtain

f;Ky*11, f;"-F—h (f I*)o

_ 6-2/3o +,,,r3.

(56)
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w herein the symbols have the same meaning as in the two-dimensional
flow: Eq. (55') then eives

K
11m(yf**) =

1

y->0 2.7r P
(56')

3

0 05 1.0

o

FIG. 7.
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Proceeding in a way analogous to that previously indicated we obtain
in 2.S in 


(e (l +Kr) X
4:r.x- 4.7r

X
4:7

	

; r '
),T 1—Mt —2KT 1—M —

rKj (yd_02/362/3

	

(y I)2%36/2/3 e

	

E.
2

d
-).-rh

o

, 2Kh(1—e)
-r 	 (y +1)2/3 2/3

h (f x**)0 (57)

hS
T - ---f - 1)213(5213

4MX

-i-

'

for

0,5

0,4

tor

,

0,3

lc=2 .1017

_‘k

K. !

0 0,5 X 1,0
FIG.8.

wherein C is the Euler's constant = 0- 5772 and [—E1(--e)] is  [---E1(—e)]
the integral exponential. We write Eq. (57) in the form

in which ti(S)

—

u

is the quasi-stationary


S"(x)  (1 Kr) log

-71(1 H-Kr)

4:r

ù

u(s)-Hlu

velocity given

e
/aura \

d.v4.7rx

vdz

by

(y -;- 1)21302'3

(58)

(58')x
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while du, is the velocity variation due to the unsteadiness effects; it is

given by the Eq.

	

-1 .S."(x)!—Ei(--As r -1-K E i) 	  dr
14:7 h h j

Asr

	

1 2 J.ç t sinh(I—e  h ) - AsS

1)2/3 62/3 e )s (y + 1)2/362/3 e h (14) (58")

if, analogously to that previously done, in the correction term du we

put for 2 the value 2, =
du(2).  An application of the formulae (58') and

dx

u(S) 


+0,5

o
0,1

o 2 0,3 0,4  0,5
0,6

,T 0,8 0,9 1 X

IC-

—0, 5

FIG. 9.
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0,2

Au

0,1

9°

2 0,3 0,4 0.5 0.6 0,7 0,8 0,9 X

Flo. 10.

(58") has been performed for the frustum of a cone, with a vertex semi-
angle of 5, followed by a cylindrical body and the pertinent diagrams
of the pressure coefficients for A — 2 • 10-2;  V  • 10-2; i'2 • 10-1 are
given in Figs. 7 and 8.
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